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Abstract The efficient handling of matrices arising in surface interpolation and approximation with radial basis
functions (RBF) is considered. To find a data-sparse approximation of the system matrix, the adaptive cross-
approximation (ACA) technique is used. The approximation of the matrix requires O

(
N log2 N

)
units of storage

and arithmetic operations, where N is the number of interpolation points. Because basis functions are not explic-
itly used, the implementation is applicable to a wide class of interpolation kernels. Numerical examples involving
generated data and measurements of formed sheet-metal parts are presented.

Keywords Blockwise low-rank approximation · Digitized surface · Meshless interpolation ·
Metal-sheet thickness

1 Introduction

Fitting a smooth function through a set of N scattered, pairwise distinct data points arises in a variety of applications.
Radial basis functions (RBFs) have become increasingly popular for the construction of such functions. Among
the key advantages of RBFs are high accuracy, differentiability of the interpolant, and absence of an underlying
mesh. Applications of RBF interpolation include bathymetry (ocean-depth measurement), topography (altitude
measurements), hydrology (rainfall interpolation), surveying, mapping, geophysics, and geology (see the survey
of applications [1]), image warping [2–4], and medical imaging [5]. Experience in a variety of applications has
shown that RBF interpolation performs very well for small problems. However, the straightforward application
of the method requires O

(
N 2

)
storage units and at least as many floating-point operations. It is computationally

prohibitively expensive to use the RBF interpolation when N > 10,000, even on modern computers.
Recent approximation methods based on data trees [6,7], various forms of the fast multipole method [8–10]

or panel clustering [11] can be applied to relax the requirements on storage and floating-point operations to
O

(
N logβ N

)
, where β depends on the chosen approach. Fast multipole methods were adopted to the RBF inter-

polation problems in [12,13]. The convolution structure of the method was exploited in [14], where a fast RBF
evaluation procedure based on nonequispaced fast Fourier transform was proposed.
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150 R. Grzhibovskis et al.

Our approach to reducing the storage and complexity employs the adaptive cross-approximation (ACA) algorithm
[15–18]. The resulting procedure requires O

(
N log2 N

)
storage units and floating-point operations. The method is

applicable to all common basis functions, such as multiquadratics, thin-plate splines, Gaussians etc. The algebraic
nature of the ACA makes it possible to use the same implementation for interpolation as well as for evaluation of the
interpolant and its derivatives regardless of the type of basis function. This property gives the method an advantage
over the above-mentioned approaches: changing to a new basis function requires only coding a one- or two-line
function. In contrast, the multipole-like procedures are designed to work with a particular class of basis functions,
and a lot of analysis and re-coding is required in order to use a different one.

The RBF interpolation procedure is described in Sect. 2. Section 3 is devoted to the modules necessary to con-
struct a blockwise low-rank approximation to the interpolation matrix, including clustering (reordering) of data
points and the ACA algorithm. Results of numerical experiments with synthetic data sets and measurements of
sheet-metal forming are reported in Sect. 4. Concluding remarks are found in Sect. 5.

2 RBF interpolation

We consider fitting a smooth function s: R
n �→ R through a set of scattered, pairwise distinct data (xi , fi )

N
i=1,

xi ∈ R
n , and introduce an interpolation function in the form

s (x) =
N∑

i=1

aiφ (‖x − xi‖)+ Pm (x), (1)

where ai are unknown coefficients, Pm is an mth-degree polynomial, and φ is a basis function. In addition to the
interpolation condition s (xk) = fk at each data point, we require

N∑

k=1

akq j (xk) = 0 (2)

for each basis function q j (x), j = 1, . . . , l (m), in the l (m)-dimensional space of mth-degree polynomials in R
n .

This yields a system of linear algebraic equations,
(
� Q

QT 0

) (
a
c

)
=

(
f
0

)
, (3)

where �i j = φ
(‖x j − xi‖

)
, f is the vector of data values fi , a is the vector containing the unknown coefficients

ai , c is the vector of coefficients of Pm with respect to the basis (qk)
l(m)
k=1 , and Qi j = q j (xi ). The system has a

unique solution if φ is strictly conditionally positive-definite of order m + 1 and the set of data points is unisolvent
for the space of polynomials of degree m [19]. If we restrict ourselves to data in R

2, i.e., xi = (
xi,1, xi,2

)
, then

adopting the thin-plate splines (TPS) interpolant

φ (r) = r2 log (r) (4)

and a first-degree polynomial,

P1 (x) = c1 + (c2, c3) · x (5)

guarantees the invertibility of system (3). Other examples of strictly conditionally positive-definite functions of
order two are the multiquadratics (MQS)

φ(r) =
(

r2 + α2
)3/2
, α ∈ R, (6)

and the power function (POW)

φ (r) = r3. (7)
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ACA for surface reconstruction 151

The TPS is a fundamental solution of the biharmonic equation in R
2. An interpolant (1) with TPS as basis function

minimizes the so-called “bending energy” E ( f ) = 〈 f, f 〉 (see [20]), where

〈 f, g〉 =
∫

R2
(∂11g ∂11 f + 2 ∂12g ∂12 f + ∂22g ∂22 f ) dxdy. (8)

Since the interpolation method discussed in this paper will be applied to sheet-metal forming, we favor the TPS basis
function. The properties of the TPS allow us to easily construct an approximating function with an even smaller
value of E . We look for coefficients ai and ci such that

F = 1

N

N∑

i=1

(s (xi )− fi )
2 + λ 〈s, s〉 (9)

attains a minimum, where λ is a positive smoothing parameter. Differentiating F with respect to ai and ci , we
obtain a system similar to (3),
(
�+ λI Q
QT 0

)(
a
c

)
=

(
f
0

)
. (10)

System (3) arises as a special case for λ = 0.
For large N , we encounter two difficulties:

1. Because the matrix� is fully populated, O
(
N 2

)
storage units are required. Even if the solution is found through

an iterative method, at least O
(
N 2

)
floating-point operations would be required. These order estimates render

the procedure prohibitively expensive when N is of order 104.
2. The system matrix has a large condition number, and this results in slow convergence and may lead to numerical

instability.

To circumvent the first difficulty, we partition the matrix� into blocks and approximate each block with a low-rank
matrix, as described below. To handle the high condition number, a change of basis is employed (see Sect. 4.1) [21].

3 Construction of a blockwise low-rank approximant

In this section, we discuss the construction of a blockwise low-rank approximant of the matrix� defined in (10). To
discuss the fast RBF evaluation procedure, we consider two point clouds in R

2, (xi )
N
i=1 and

(
y j

)M
j=1. The elements

of the matrix� are�i j = φ
(‖xi − y j‖

)
. Suppose that we have found two sets of indices I ⊆ (i)N

i=1 and J ⊆ (i)M
i=1

such that the sets of points τ = ∪i∈I xi and ν = ∪ j∈J y j are well separated; that is,

max (diam τ, diam ν) ≤ η dist (τ, ν), (11)

for some η ∈ (0, 1). The diameter of a set of points ξ is the maximal distance between any pair of points in ξ ,

diam ξ = max
p,q∈ξ ‖p − q‖. (12)

The distance between two sets of points is defined as

dist (τ, ν) = min
x∈τ, y∈ν ‖x − y‖. (13)

Consider the sub-block
{
�i j

}
i∈I, j∈J of the matrix �. This block has a low-rank approximant provided that the

partial derivatives of φ̃ (x, y) = φ (‖x − y‖) decay sufficiently fast [15,16]. More precisely, φ̃ must satisfy
∣∣∣∂αy φ̃ (x, y)

∣∣∣ ≤ C1 |α|! C |α|
2 R−|α| sup

‖y−z‖<R
|φ̃ (x, z) | for R > 0, (14)

where R = |x − y|, the constants C1, C2 are positive, and α is a multi-index. This low-rank approximant can be
found by several methods. Although the truncated singular-value decomposition produces the best approximant,
the procedure is computationally too expensive. An inexpensive alternative uses the interpolation of φ as in panel
clustering [11], or the adaptive cross-approximation (ACA) algorithm [15–18]. Following this strategy, we construct
a blockwise low-rank approximant of � using ACA.
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152 R. Grzhibovskis et al.

3.1 Clustering of the data points

We use a hierarchical clustering method similar to that formulated in [15] for a set of boundary elements in R
3. For

a given set of points (xi )
N
i=1 ⊂ R

2, we construct a cluster tree Tx as follows:

1. Let the set of all points be the root cluster of the tree.
2. Compute the mass center, and axes of inertia of the cluster.
3. Split the cluster into two parts by a straight line that passes through the center of mass and is orthogonal to the

longest axis of inertia.
4. Assign the obtained groups of points as cluster offsprings.
5. Recursively apply the subdivision procedure to the offsprings so long as the cluster consists of more than one

point.

A cluster tree Ty is then constructed for the second point set
(
y j

)M
j=1. Having computed Tx and Ty , we can recur-

sively generate a list of disjoint admissible blocks P that, together with the additional sparse part S, cover the whole
matrix �. This can be accomplished by the following recursive procedure:

1. Set τ = Tx , ν = Ty , P = ø, and S = ø.
2. If τ or ν has only one element (no offsprings), add τ × ν to S and end the procedure.
3. If (τ, ν) satisfy (11), add τ × ν to P and end the procedure.
4. Denote by τ1 and τ2 the offsprings of τ , and by ν1 and ν2 the offsprings of ν. Proceed to Step 2 with (τ, ν) being
(τ1, ν1), (τ1, ν2), (τ2, ν1), or (τ2, ν2).

On completion, the algorithm produces a list of admissible blocks P , satisfying (11), and a list S of small blocks.
We compute all small blocks directly and approximate each admissible block using the ACA procedure.

3.2 Adaptive cross-approximation

Given an admissible block τ × ν, the following procedure allows us to construct its low-rank approximation.

Algorithm 1

1. Initialization

R0 = τ × ν, S0 = 0. (15)

2. for i = 0, 1, 2, . . .

2.1. Pivot element

ki+1, �i+1 = ArgMax |(Ri )k�| . (16)

2.2. Normalizing constant

γi+1 = (
(Ri )ki+1�i+1

)−1
. (17)

2.3. New vectors

ui+1 = γi+1 Ri e�i+1 , vi+1 = R�
i eki+1. (18)

2.4. New residual

Ri+1 = Ri − ui+1v
�
i+1. (19)

2.5. New approximation

Si+1 = Si + ui+1v
�
i+1. (20)
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Since the search for a pivot element (Step 2.1) involves scanning the full block, the method is coined the fully
pivoted ACA. The numerical cost is O (|τ ||ν|), which results in a quadratic complexity for the blockwise low-rank
approximant. However, the final memory requirement is almost linear.

A minor modification of the above procedure in Step 2.1 leads to so-called partially pivoted version of the ACA.
In this procedure, the pivot element is chosen among already computed entries of the residual R. This reduces the
complexity of the algorithm to O (r (|ν| + |τ |)), where r is the rank of the approximation. A closer investigation
of r shows that the numerical cost for constructing the blockwise low-rank approximant of the whole matrix is
almost linear (see [15,18]). Using a limited amount of block entries during the procedure requires corrections to
the stopping criteria to ensure that the approximant covers the whole block even in some pathological cases. An
extensive discussion of the partially pivoted ACA algorithm can be found in [16] and [22].

4 RBF interpolation and approximation

A blockwise low-rank approximant yields an efficient matrix-vector multiplication procedure, which is used to
solve the system (10) by the generalized minimal residual iterative solution scheme (GMRES) [23]. Before turning
to discussing numerical experiments, we describe a preconditioning technique that accelerates the convergence.

4.1 Preconditioning

Let diam X denote the diameter of our point set X = ∪i xi (see (12)), and h X denote the smallest distance between
neighboring points in X ,

h X = min
i

min
j �=i

‖xi − x j‖. (21)

Because in the case of the TPS basis function, the upper bound on the condition number of � can be large [24]

cond � ≤ C Nφ (diam X) h−2
X , (22)

we use a preconditioning technique described in [21]. The preconditioning method is based on a special change of
basis, which is particularly effective when a GMRES solution scheme is used. Consider a set of cardinal functions
{ψi }N

i=1, ψi
(
x j

) = δi j , where δi j is the Kronecker delta. The interpolation matrix for such functions is a perfectly
conditioned unit matrix I . To improve the conditioning of our interpolation system, we change the basis from φ

to ψ ,

ψ j (x) = Pm (x)+
N∑

i=1

ν j iφ (‖xi − x‖) . (23)

However, performing this change of basis requires more computations then obtaining the solution of the original
system. We get around this difficulty by using approximate cardinal functions, where the sum in the above formula
is taken over β + γ 
 N terms. First, we assign β − 1 data points closest to each x j and call this set S j . We also
specify γ uniformly distributed points in the interpolation domain and denote this set by Ŝ. Then, instead of (23),
we define the new basis by

ψ j (x) = Pm(p)+
∑

xi ∈S j ∪Ŝ

ν j iφ (‖xi − x‖), (24)

where

ψ j (xi ) = δi j . (25)

In these settings, all coefficients ν j i can be obtained at a linear cost of O
(
N (β + γ + l (m))3

)
flops. These

coefficients form a sparse preconditioning matrix for the system (10).
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154 R. Grzhibovskis et al.

Typical values of parameters used in our computations are β ∼ 40 and γ ∼ 16. With the preconditioning strategy,
the system for interpolating ∼ 105 points and h X ∼ 10−4 requires about 100 GMRES iterations to converge to a
residual of 10−10. Without the preconditioner, the computations do not converge to the residual.

The right-hand side of (22) suggests choosing the ACA approximation accuracy ε ≤ (cond �)−1 when
constructing the approximant to �.

4.2 Reconstruction

Having solved the system, we evaluate the RBF on a set of points X ′ = ∪M
i=1 y j ,

s
(
y j

) =
N∑

i=1

aiφ
(‖xi − y j‖

) + P
(
y j

)
, j = 1, . . . ,M. (26)

Evaluation with a desired accuracy ε′ can be accomplished efficiently by constructing the blockwise low-rank
approximant to the matrix �′ = (

φ
(‖xi − y j‖

))
i=1,N , j=1,M . Now the value of the ACA approximation accuracy

ε can be chosen so that ε ≤ ε′. With the coefficients ai at hand, we can also find the energy E = aT�a and partial
derivatives s′

1 (x) and s′
2 (x) of the interpolant (or approximant). The evaluation of partial derivatives on X ′ can be

accomplished efficiently using the same blockwise low-rank approximation strategy. In the case of s′
1, we rewrite

the derivative as

s′
1

(
y j

) =
N∑

i=1

aiφ
′
y j,1

(‖xi − y j‖
) + c1

=
N∑

i=1

ai
(
2 log ‖xi − y j‖ + 1

) (
xi,1 − y j,1

) + c1

= �̃1a + c1, (27)

where xi = (
xi,1, xi,2

)
and �̃1

i j = (
2 log ‖xi − y j‖ + 1

) (
xi,1 − y j,1

)
when ‖xi − y j‖ > 0 or �̃1

j i = 0 otherwise.

This generating function is asymptotically smooth. Therefore, the matrix �̃1 can be approximated by a blockwise
low-rank using the ACA. The same argument holds for s′

2 and the corresponding matrix �̃2.

4.3 Application to Franke’s function

Before turning our attention to measured data, we consider a function introduced by Franke [25] as a standard test,

f (x) = 3

4
e−(

(9 x1−2)2+ (9 x2−2)2
)
/4 + 3

4
e−(9 x1+1)2/49−(9 x2+1)2/10

+1

2
e−(

(9 x1−7)2/4+ (9 x2−3)2
)
− 1

5
e−(9 x1−4)2−(9 x2−7)2 . (28)

The graph of this function is given in Fig. 1. The tests are based on sets of scattered data sites with increasing
point density from N = 1,000 to 500,000 on the square [−0.1, 1.1] × [−0.1, 1.1]. The coordinates of each point
were obtained using a pseudo-random generator with a uniform distribution. After solving system (10) using a

preconditioned GMRES scheme, we evaluate the interpolant s(p) and gradient ∇s(p) =
(

s′
x (p) , s′

y(p)
)

on a

regular grid of 200 × 200 points. On this grid, we compute the mean square errors

δ2 = M−1

(
M∑

i=1

(s (yi )− f (yi ))
2

)1/2

, (29)

δ∇2 = M−1

(
M∑

i=1

‖∇s (yi )− ∇ f (yi ) ‖2

)1/2

, (30)
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Fig. 1 Contours of Franke’s function, F , and its gradient, ‖∇F‖

Table 1 Accuracy of the interpolation for Franke’s function

N HX δ2 δ∞ δ∇2

1,000 6.366E−02 3.40E−06 5.32E−03 8.897E−5

5,000 2.962E−02 4.38E−07 1.13E−03 2.576E−5

10,000 2.357E−02 2.55E−07 1.04E−03 1.819E−5

25,000 1.653E−02 9.76E−08 4.26E−04 1.038E−5

50,000 9.895E−03 4.71E−08 1.31E−04 7.518E−6

100,000 7.106E−03 2.51E−08 1.24E−04 5.189E−6

500,000 3.454E−03 4.85E−09 1.93E−05 2.447E−6

10−24 × 10− 3 7 × 10−3 2 × 10−2 4 × 10−2 HX

10−3

10−4

10−5

10−6

10−7

10−8

2

1

δ2

δ∞

δ∇2

Fig. 2 Dependence of the mean square error δ2, pointwise error δ∞, and mean square error of the gradient δ∇2 on the data spacing,
HX

and the maximum difference δ∞ = maxi |s (yi ) − f (yi )| with respect to the known function values (28). The
interpolation accuracy is reported in Table 1 and Fig. 2. As expected, a quadratic dependence of δ2 on the separation
distance HX = maxi min j �=i |xi − x j | is observed (see [26]). We see that δ∞ behaves as O

(
H2

X

)
and δ∇2 behaves

somewhat better than O (HX ). Table 2 illustrates the performance of the ACA compression technique when solving
the interpolation problem. The memory requirement (“Mem”) is given along with the compression rate (“rat”) for
the approximation as a measure of the data reduction achieved through ACA. The number of GMRES iterations (#)
and CPU time (“sol. t.”) are also given. The approximation precision for ACA was chosen ε= 10−10 in all numerical
experiments. Such accurate approximation is necessary for large point densities since the expected matrix condition
number is large. However, computations for N < 105 can be performed with a larger ε value, thus achieving better
timing and compression.
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Table 2 Performance of
the interpolation procedure
for Franke’s function

N [103] h X Mem [MB] rat. [%] compr. t. [s] GMRES # sol. t. [s]

1 9.449E−04 2.5 33.80 < 1 25 < 1

5 9.635E−05 28.1 14.73 3 27 1

10 9.635E−05 69.2 9.07 6 29 4

25 2.602E−05 199.5 4.18 22 30 12

50 1.744E−05 466.4 2.44 55 33 33

100 1.379E−05 1122.4 1.47 141 40 110

500 2.193E−06 7540.8 0.39 1028 199 3693

Table 3 Performance of
the ACA compression for
different basis functions

N [103] BF Mem [MB] rat. [%] Time [s]

25 TPS 199.5 4.18 22

MQS 189.2 3.96 23

POW 195.5 4.10 24

G 55.5 1.16 3

50 TPS 466.4 2.44 55

MQS 431.0 2.26 65

POW 471.2 2.47 83

G 117.6 0.61 8

100 TPS 1122.4 1.47 141

MQS 968.7 1.26 105

POW 1067.5 1.39 137

G 290.5 0.38 20

500 TPS 7540.8 0.39 1028

MQS 5531.3 0.29 733

POW 6827.8 0.36 908

G 1647.3 0.08 115

4.4 Performance for other basis functions

Since the ACA procedure involves only evaluations of the basis function, the same construction of a blockwise
low-rank approximant can be applied for any asymptotically smooth φ. To test the compression procedure, we
compute the blockwise low-rank approximants to matrices � for the MQS (6), POW (7), and the Gaussians (G),

φ (r) = e−r2/2. (31)

The performance of the compression procedure is illustrated in Table 3. Thin plain splines (TPS), MQS, and POW
result in similar compression ratio and timing. The compression rates for the Gaussian basis function is about four
times higher than those of TPS, MQS or POW. However, the Gaussian leads to a much higher condition numbers
for the matrix � (see [27]).
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Table 4 Performance of the interpolation procedure for data sets A, B, and C

Set N h X HX rat. [%] compr. t. [s] GMRES # sol. t. [s]

A 10,201 6.0E−03 7.2E−03 8.40 10 36 6

B 30,727 4.3E−05 2.7E−02 3.97 25 118 64

C 118,205 2.9E−04 3.9E−03 1.35 220 141 413

Fig. 3 Data set A and the corresponding interpolation results

Fig. 4 Data set B and the corresponding interpolation results

4.5 Application to digitized surfaces

We now consider an example from a sheet-metal forming process yielding physical parts whose inclination with
respect to the forming axis (z-axis) is less than 90 degrees. A part without undercuts can be represented by an RBF
interpolant. After the forming is finished, the coordinates of points on the top and bottom surface of the sheet are
obtained by digitizing both surfaces, and the measured surfaces are interpolated using the RBF (1). Table 4 illustrates
the performance of the interpolation procedure for the data sets depicted in Figs. 3–5. We see that compression rates
for these data sets are comparable to those obtained in Sect. 4.3. We also observe an increase in iteration number for
the set B due to small h X values. The value of HX for this data set is rather large, and this can result in considerable
deviations of the graph of s (p) from the true shape of the metal sheet.

If we take a non-zero λ, the graph of s (p) will not necessarily pass through data points (xi , fi ), but the bending
energy E will decrease. This decrease is desirable, provided that the values of s at the data points are still close to
fi i.e., max | fi − s (xi )| ≤ µ, where µ is the accuracy of the measurements. To investigate this balance, in Figs. 6
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Fig. 5 Data set C and the corresponding interpolation results

λ10− 610− 710− 810− 910− 1010− 1110− 120.

max fi − s pi
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10− 4

10− 5

10− 6
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10− 9
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B
A

Fig. 6 Influence of λ on max | fi − s (pi ) |. The error of mag-
nitude 10−9 for λ = 0 is due to the GMRES residual (set to
10−10) and to the ACA precision set to 10−10

λ10− 610− 710− 810− 910− 1010− 1110− 120.

101

10 2

C
B
A

Fig. 7 Influence of λ on the bending energy, E

and 7 we plot max | fi − s (xi ) | and E versus λ. Since the error in our measurements is 0.1 mm = 10−4, we may
take λ ∼ 10−10 when interpolating the data sets A and C.

4.6 Estimate of thickness

A typical objective in sheet-metal forming is the measurement of the thickness of formed sheet-metal products.
This is especially important when the parts should meet stiffness specifications. By measuring the shape of both the
top and bottom face of the sheet-metal part (in the same coordinate system), we can calculate the sheet-thickness
distribution for the whole part as follows. Points from the first set represent the top surface, and points from the
second set represent the bottom surface of the sheet. We find RBFs st and sb approximating both surfaces and
evaluate their half sum, f̃i = (st (yi )+ sb (yi ))/2, at regular grid points yi . Then we construct the RBF interpolants
s̃, s̃′

1 and s̃′
2 that approximate this middle surface and its partial derivatives. Having obtained s̃′

1 and s̃′
2 allows us to

compute the normal vector N . For each yi we can now compute an approximate thickness value t using a cosine
rule t = N3 (st − sb). The computed thickness distribution for the data set A is shown in Fig. 8. The initial thickness
of the undeformed sheet is 1 mm. Comparing this distribution with the shape of the metal part, we see that the sheet
appears thinner in areas where the slope is steep. Some small thickening regions along the sides of the deformed area
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Fig. 8 Estimated distribution of thickness in mm along the deformed metal sheet

are also observed. Overall, the developed interpolation technique can be used to calculate the thickness distribution
of a sheet-metal part non-destructively, provided that both sides can be accessed by a digitizer.

5 Conclusions

Our study shows that the matrices arising in the RBF interpolation can be approximated with high accuracy and
efficiency by blockwise low-rank matrices. We have used this result to solve scattered data interpolation problems
avoiding construction of a mesh. The ACA technique allows to treat problems with up to 500,000 data points.
The construction of the RBF interpolant in this case takes about one hour on a single CPU PC. In contrast to
multipole-like methods, it is possible to perform the interpolation using different basis functions without much
re-coding.

Overall, the numerical experiments confirm the almost linear storage and complexity order estimates. The method
performs well on the measurement data for sheet-metal forming, where the use of TPS basis function offers a num-
ber of benefits. The differentiability of the RBF interpolant in this case allows the fast reconstruction of the sheet’s
normal vector, which is used to calculate thickness estimates.

Although our study focuses on two-dimensional considerations, the method of constructing blockwise low-
rank approximants to the corresponding matrices also applies to RBF interpolation in three or more dimensions.
Future developments of the technique presented here might also involve an efficient construction of preconditioners
using the hierarchical matrix structure, as it was done in [28,29] for matrices arising in boundary-element and
finite-element methods.
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